CONTRIBUTIONS TO DYNAMICAL SYSTEMS
THEORY AND APPLICATIONS

Habilitation Thesis

Author: EVA KASLIK

Timișoara, 2015
Contents

Abstract 5

Rezumat 9

I Main Scientific Achievements 13

1 Introduction 15

1.1 Academic Background ... 15
1.2 Summary of the Doctoral Thesis 16
1.3 Postdoctoral Research .. 17
1.4 Research Grants and Contracts 18
1.5 Autonomy and Visibility of the Scientific Activity 18

2 Mathematical Modeling of Neural Networks 21

2.1 Introduction ... 21
2.2 Bifurcations and chaos in discrete-time delayed Hopfield neural networks 21
2.3 Nonlinear dynamics and chaos in fractional-order neural networks 32
2.4 Multistability and multiperiodicity in delayed impulsive neural networks 51

3 Qualitative Aspects of Fractional-Order Dynamical Systems 73

3.1 Introduction ... 73
3.2 Preliminary results ... 74
3.3 The Periodicity Problem .. 76
3.4 Stability analysis of linear fractional delay differential equations 82
3.5 Conclusions ... 97

4 Longitudinal Flight Dynamics 99
CONTENTS

4.1 Introduction ... 99
4.2 Preliminary results ... 100
4.3 Existence of oscillatory solutions 104
4.4 Existence of heteroclinic orbits 114
4.5 Numerical example ... 118
4.6 Conclusions .. 119

II Career Development Plan .. 121

5 Future Scientific Endeavors .. 123
 5.1 Qualitative Theory of Fractional-Order Dynamical Systems .. 123
 5.2 Numerical Simulations and Chaotic Behavior in Fractional-Order Dynamical Systems 124
 5.3 Potential Applications ... 125

Bibliography .. 129
Abstract

Based on some of the most relevant results of the author published during the last decade, this work is devoted to presenting several contributions to the development of the theory of dynamical systems, with the further aim of addressing practical problems related to the modeling of recurrent neural networks and some aspects of longitudinal flight dynamics.

The first part of the thesis is structured into four chapters: the first chapter gives an overview of the academic background and main scientific achievements of the author since the completion of her Ph.D. thesis, the second chapter is devoted to the advanced mathematical modeling of neural networks, the third chapter describes important theoretical results concerning several qualitative aspects of fractional-order dynamical systems and the fourth chapter focuses on the understanding of oscillatory behavior in longitudinal flight dynamics.

Following the introductory first chapter, the second chapter is divided in three distinct parts, summarizing the author's most important results related to the mathematical modeling of neural networks. Section 2.2 includes several interesting results concerning the characterisation of bifurcation phenomena and chaotic behavior in discrete-time delayed Hopfield neural networks with unidirectional ring architecture [KB09b]. The stability domain of the null solution is found, the values of the characteristic parameter for which bifurcations occur at the origin are identified and the existence of Fold/Cusp, Neimark-Sacker and Flip bifurcations is proved. These bifurcations are analyzed by applying the center manifold theorem and the normal form theory. It is proved that resonant 1:3 and 1:4 bifurcations may also be present. It is shown that the dynamics in a neighborhood of the null solution become more and more complex as the characteristic parameter grows in magnitude and passes through the bifurcation values. The main novelty of this work is the theoretical proof of chaotic behavior in the sense of Marotto, when the interconnection coefficients are large enough in magnitude and one of the activation functions has at least two simple real roots. These theoretical results are increasingly important due to the applications of chaotic neural networks in fields like cryptography or associative memories.

It is important to emphasize that on one hand, these results generalize the paper [KB08a] devoted to the case of two-dimensional neural networks, while on the other hand, they are partially generalized in [Kas09a], for the case of n-dimensional neural networks with bi-directional ring architecture. Ring architectures have been found in a variety of neural structures, such as hippocampus, cerebellum, neocortex, and even in chemistry and electrical engineering. The real cortical connectivity pattern is extremely sparse: most connections are between nearby cells, and long-range connections become progressively more infrequent. Simplified connectivity structures (such as ring or hub) are studied to gain insight into the mechanisms underlying the behavior of complex recurrent networks. Studying a pattern of interconnections (called "network motif") occurring in a complex network is fundamental to understanding the dynamic behavior of the whole network.
Section 2.3 is devoted to the theoretical and numerical analysis of the dynamics (stability and multi-stability, bifurcation phenomena and chaos) of fractional-order Hopfield neural networks with hub and ring structures [KS11a, KS12c]. In this section, the critical values of the fractional order $q \in (0, 1)$ for which Hopf bifurcations occur are identified and exemplified by numerical simulations, suggesting possible routes towards chaotic behavior, when the fractional order of the system increases. The numerical examples presented in this section unveil highly complex dynamical behavior in fractional-order neural networks, such as the co-existence of strange attractors with several asymptotically stable steady states and limit cycles.

The main benefit of fractional-order models in comparison with classical integer-order models is that fractional derivatives provide a good tool for the description of memory and hereditary properties of various processes. In fact, fractional-order systems are characterized by infinite memory, as opposed to integer-order systems. Recurrent neural networks include cyclic connections of the neurons, such that they can incorporate context information or temporal dependencies in a natural way. Considering all these facts, it is easy to realize that the incorporation of a memory term (in the form of a fractional derivative or integral) into a neural network model is a tremendously important improvement. It is also important to point out that fractional-order recurrent neural networks are expected to be very effective in applications such as parameter estimations due to the fact they are characterized by infinite memory.

Section 2.4 summarizes multistability and multiperiodicity results obtained for impulsive neural networks with time-dependent and distributed delays. In the real world, the state of electronic networks is often subject to instantaneous changes, due to frequency change, switching phenomenon, or by some noise, and therefore, it is straightforward to incorporate impulsive terms into the mathematical models of neural networks. The results presented in this section have been partially published in the representative papers [KS11c, KS11d], and have been adapted for the special case of discrete-time impulsive Hopfield neural networks in [KS11b]. The main theoretical results are obtained using the Leray-Schauder fixed point theorem, Lyapunov functionals and control by impulses. The given criteria are easily verifiable, possess many adjustable parameters, and depend on impulses, providing flexibility for the analysis and design of delayed neural networks with impulse effects.

The aim of the third chapter is to emphasize that in many cases, qualitative properties of integer-order dynamical systems cannot be extended by simple generalizations to fractional-order dynamical systems, and hence, the analysis of fractional-order dynamical systems is a very important field of research. The problems discussed in this chapter have arisen as natural questions during the study of the dynamics of fractional-order neural networks described in section 2.3.

Section 3.3, which synthesises the periodicity problem described in [KS12b], is devoted to the proof of the following important result: the fractional-order derivative (of Caputo, Grunwald-Letnikov or Riemann-Liouville type) of a non-constant periodic function cannot be a periodic function of the same period, while the integer-order derivative of a periodic function is indeed a periodic function of the same period. As a consequence, periodic solutions do not exist in a wide class of fractional-order dynamical systems. The proof is achieved using an elegant Mellin transform approach.

Section 3.4 describes a few problems regarding the asymptotic stability analysis of fractional-order time-delayed linear differential equations [KS12a]. While integer-order delay differential equations have been thoroughly investigated during the past decades, there is no general stability theory for fractional-order differential equations with delay. Having this aim in mind, in this section, several approaches are presented. It is shown that the Laplace transform method and the well-known method of steps lead to different characteristic equations that have to be associated
to the linear fractional-order delay differential equation of order $\alpha \in (0, 1)$. The characteristic equation obtained by the first approach contains the multivalued complex power function and the exponential function, while the one obtained by the second method contains the one-parameter Mittag-Leffler function. However, the two characteristic equations coincide in the integer order case $\alpha = 1$. Using the characteristic equation involving the Mittag-Leffler function, a necessary condition for asymptotic stability has been obtained, and other stability criteria based on the Argument Principle have also been explored. At this moment, it is still an open question whether the characteristic equation obtained by the method of steps can also provide a sufficient condition for the asymptotic stability of a linear fractional-order delay differential equation.

Chapter 4 represents a contribution to explaining the appearance of oscillatory behavior in longitudinal flight dynamics. In section 4.3, by means of coincidence degree theory and Mawhin’s continuation theorem, a theoretical proof is given for the existence of oscillatory solutions of the simplified dynamical system which governs the motion around the center of gravity in a longitudinal flight with constant forward velocity of a rigid aircraft, when the automatic flight control system is decoupled and the elevator deflection exceeds the bifurcation values [KB10, BBK10]. Sufficient conditions are obtained for the existence of oscillatory solutions for any value of the elevator deflection δ_e outside the interval $J = [\underline{\delta}_e, \overline{\delta}_e]$ which corresponds to the existence of equilibria.

In section 4.4, the existence of an infinite chain of heteroclinic orbits connecting saddle-nodes is proved [KB11], in the case of a simplified system of differential equations governing the longitudinal flight of an aircraft, using fixed point theory for nonlinear Volterra operators with convolution kernels. It has to be emphasized that at the critical values $\underline{\delta}_e$ and $\overline{\delta}_e$ of the elevator deflection, an infinity of saddle-node bifurcations take place. In this case, Hopf bifurcations are not present, and hence, a Hopf bifurcation analysis is not an appropriate tool for depicting oscillatory behavior. In fact, the saddle-node bifurcation points are linked by a chain of heteroclinic orbits, and the onset of oscillatory behavior, when δ_e exceeds the critical values $\underline{\delta}_e$ and $\overline{\delta}_e$, is caused by a global bifurcation which involves this whole chain of heteroclinic orbits.

The second part of this thesis presents a Career Development Plan and an outline of the author’s future scientific endeavors.
Rezumat

Având la bază cele mai relevante rezultate științifice ale autorului, publicate pe parcursul ultimului deceniu, această teză este dedicată prezentării a mai multor contribuții la dezvoltarea teoriei sistemelor dinamice, având ca și scop final abordarea unor probleme practice legate de modelarea rețelelor neuronale recurente și a unor aspecte referitoare la dinamica zborului longitudinal.

Prima parte a acestei teze este structurată în patru capitole: primul capitol oferă o imagine de ansamblu asupra rezultatelor academice și a principalelor realizări științifice ale autorului din perioada ulterioară finalizării tezei de doctorat, al doilea capitol este dedicat modelării matematice avansate a rețelelor neuronale, al treilea capitol descrie câteva rezultate teoretice importante cu privire la mai multe aspecte calitative ale sistemelor dinamice de ordin fracționar, iar al patrulea capitol se axează pe înțelegerea comportamentului oscilator în dinamica zborului longitudinal.

După primul capitol introductiv, al doilea capitol este compus din trei părți distincte, care sintetizează cele mai importante rezultate ale autorului referitoare la modelarea matematică a rețelelor neuronale. Secțiunea 2.2 include mai multe rezultate interesante cu privire la caracterizarea fenomenelor de bifurcație și a comportamentului haotic în rețele neuronale de tip Hopfield cu întârzieri, în timp discret, cu arhitectură de tip inel unidirectional [KB09b]. Domeniul de stabilitate al soluției nule este determinat, sunt identificate valorile parametrului caracteristic pentru care apar bifurcații în vecinătatea originii, și este demonstrată existența unor bifurcații de tip Fold/Cusp, Neimark-Sacker și Flip. Aceste bifurcații sunt analizate prin aplicarea teoremei varietății centrale și a teoriei formelor normale. De asemenea, este demonstrat și faptul că pot fi prezente și bifurcații de tipul rezonanțelor 1:3 și 1:4. Se arată că dinamica într-o vecinătate a soluției nule devine tot mai complexă odată cu creșterea în magnitudine a parametrului caracteristic și trecerea acestuia prin valorile corespunzătoare bifurcațiilor. Principala noutate a acestui rezultat este demonstrația teoretică a comportamentului haotic în sensul Marotto, în cazul în care coeficienții de interconexiune neuronală sunt suficient de mari în modul și una dintre funcțiile de activare neuronală are cel puțin două rădăcini reale simple. Aceste rezultate teoretice au o importanță semnificativă, având în vedere aplicațiile rețelelor neuronale haotice în domeniul cum ar fi criptografia sau memoriile asociative.

Este important să subliniem faptul că, pe de o parte, aceste rezultate generalizează lucrarea [KB08a] dedicată cazului rețelelor neuronale bidimensionale, iar pe de altă parte, ele sunt parțial generalizeate în lucrarea [Kas09a], pentru rețele neuronale n-dimensionale cu arhitectură de tip înel bidirecțional. Aceste arhitecturi de tip înel apar într-o varietate de structuri neuronale, cum ar fi hipocampusul, cerebelul, neocortexul, dar și în chimie și ingerință electrică. Schiobanele reale de conectivitate corticală sunt extrem de rarefiate: cele mai multe conexiuni sunt între celeulele apropiate și conexiunile cu rază lungă devin treptat mai rare. Aceste structuri de conectivitate simplificate (cum ar fi cele de tip înel sau hub), sunt studiate pentru a obține o perspectivă asupra mecanismelor care stau la baza comportamentului rețelelor recurente complexe. Studiul
unui şablon de interconexiuni (denumit ”network motif”) ce apare într-o rețea complexă este fundamental pentru înțelegerea comportamentului dinamic al întregii rețele.

Sectiunea 2.3 este dedicată analizei teoretice și numerice a dinamicii (stabilitate și multistabilitate, fenomene de bifurcație și haos) rețelelor neuronale de tip Hopfield, de ordin fracționar, cu structuri de tip hub și inel [KS11a, KS12c]. În această secțiune, sunt identificate valorile critice ale ordinului fracțional \(q \in (0, 1) \) pentru care apar bifurcațiile de tip Hopf și sunt exemplificate prin simulări numerice, sugerând eventualule rute spre un comportament haotic, atunci când ordinul fracțional al sistemului crește. Exemplele numerice prezentate în această secțiune dezvăluie un comportament dinamic complex în rețelele neuronale de ordin fracțional, cum ar fi co-existența unor atractorii stranii cu mai multe stări de echilibru și cicluri limită asimptotice stabile.

Principalul beneficiu al modelor de ordin fracțional în comparație cu modelele clasice de ordin întreg este că derivatele fracționare reprezintă un instrument adecvat pentru descrierea proprietăților ereditare și de memorie ale diferitelor procese. De fapt, sistemele de ordin fracțional sunt caracterizate prin memoriile infinită, spre deosebire de sistemele dinamice de ordin întreg. Rețelele neuronale recurente includ conexiuni ciclice ale neurilor, astfel încât să poată încorpora informații contextuale sau dependențe temporale într-un mod natural. Având în vedere aceste fapte, este ușor să realizăm că incorporarea unui termen de memorie (sub forma unei derivate sau integrale de ordin fracțional) într-un model de rețea neuronală este o imbunătățire extrem de importantă. De asemenea, este important să subliniem că rețelele neuronale recurente de ordin fracțional sunt presupuse a fi foarte eficiente în aplicații precum estimarea parametrilor datorită faptului că acestea sunt caracterizate prin memorie infinită.

Sectiunea 2.4 sintetizează rezultate de multistabilitate și multiperiodicitate obținute pentru rețele neuronale cu impulsuri, cu întâraziere dependentă de timp și distribuită. În lumea reală, starea rețelelor electronice face adesea obiectul unor schimbări de frecvență, fenomene de comutare, sau de unele zgomote, și din acest motiv, includerea unor termeni impulsivi în modelele matematice ale rețelelor neuronale are o motivație trivială. Rezultatele prezentate în această secțiune au fost parțial publicate în lucrările reprezentative [KS11c, KS11d], și au fost adaptate pentru cazul special al rețelor neuronale impulsive de tip Hopfield în timp discret în [KS11b]. Principalele rezultate teoretice au fost obținute folosind teorema punctului fix Leray-Schauder, funcționale Lyapunov și controlul prin impulsuri. Criteriile furnizate sunt ușor de verificat, posedă multe parametri reglabili, și depind de impulsuri, oferind flexibilitate pentru analiză și proiectarea rețelelor neuronale cu întâraziere și impulsuri.

Scopul celui de-al treilea capitol este de a sublinia faptul că, în multe cazuri, proprietățile calitative ale sistemelor dinamice de ordin întreg nu pot fi extinse prin simple generalizări la sisteme dinamice de ordin fracțional, și, prin urmare, analiza sistemelor dinamice de ordin fracțional este un domeniu de cercetare foarte important. Problemele discutate în acest capitol au la origine câteva întrebări esențiale ivite pe parcursul studiului dinamic al rețelelor neuronale fracționale descrise în secțiunea 2.3.

Sectiunea 3.3, care sintetizează problema de periodicitate descrisă în [KS12b], este dedicată demonstrării următorului rezultat important: derivata de ordin fracțional (de tip Caputo, Grunwald-Letnikov sau Riemann-Liouville) a unei funcții periodice ne-constante nu poate fi o funcție periodică de aceeași perioadă, în timp ce derivata de ordin întreg a unei funcții periodice este evident o funcție periodică de aceeași perioadă. În consecință, nu există soluții periodice pentru o clasă largă de sisteme dinamice de ordin fracțional. Demonstrația este realizată folosind o abordare elegantă pe baza transformatei Mellin.

Sectiunea 3.4 descrie câteva probleme legate de analiza stabilității asimptotice a ecuațiilor
diferențiale liniare de ordin fracționar, cu întârzieri [KS12a]. În timp ce ecuațiile diferențiale clasice cu întârzieri au fost investigate amănunțit în ultimele decenii, în prezent, nu există o teorie generală a stabilității pentru ecuații diferențiale de ordin fracționar cu întârzieri. Având în vedere acest scop, în această secțiune, sunt prezentate mai multe abordări. Se arată că metoda transformatei Laplace și bine-cunoscuta metodă a pașilor succesivi duc la diferite ecuații caracteristice care trebuie să fie asociate unei ecuații diferențiale liniare cu întârzieri, de ordin fracționar $\alpha \in (0, 1)$. Ecuatia caracteristică obținută prin prima abordare conține funcția putere complexă cu valori multiple și funcția exponențială, în timp ce cea obținută prin a doua metodă conține funcția Mittag-Leffler cu un parametru. Cu toate acestea, cele două ecuații caracteristice coincid în cazul special al ordinului întreg $\alpha = 1$. Folosind ecuația caracteristică ce conține funcția Mittag-Leffler, a fost obținută o condiție necesară pentru stabilitatea asimptotică, și au fost explorate și alte criterii de stabilitate bazate pe principiul argumentului. În acest moment, este o problemă deschisă dacă ecuația caracteristică obținută prin metoda pașilor succesivi poate oferi, de asemenea, o condiție suficientă pentru stabilitatea asimptotică a unei ecuații diferențiale liniare de ordin fracționar.

Capitolul 4 reprezintă o contribuție la explicarea apariției comportamentului oscilant în dinamica zbolorului longitudinal. În secțiunea 4.3, prin intermediul teoriei gradului de coincidență și a teoremei de continuare a lui Mawhin, este prezentată o demonstrație teoretică a existenței unor soluții oscilatorii ale sistemului dinamic simplificat care descrie mișcarea în jurul centrului de greutate într-un zbotor longitudinal cu viteză constantă al unui avion rigid, atunci când sistemul de control automat al zbolorului este decuplat și deflexia elevatorului depășește valorile de bifurcație [KB10, BBK10]. Condiții suficiente sunt obținute pentru existența unor soluții oscilatorii pentru orice valoare a deflexiei elevatorului δ_e într-un intervalui $J = [\delta_e, \delta_e]$ care corespunde existenței soluțiilor de echilibru. În secțiunea 4.4, este demonstrată existența unui lanț infinit de orbite heteroclinice ce conectează echilibre de tip șa-nod [KB11], în cazul unui sistem simplificat de ecuații diferențiale care guvernează zbolorul longitudinal al unei aeronave, folosind teoria punctului fix pentru operatori Volterra neliniari cu nuclee de convoiuție. Trebuie subliniat faptul că pentru valorile critice δ și $\overline{\delta}$ ale deflexiunii elevatorului, o infinitate de bifurcații de tip șa-nod au loc. În acest caz, bifurcațiile Hopf nu sunt prezente, și, prin urmare, o analiză a acestora nu este un instrument adecvat pentru descrierea comportamentului oscilant. De fapt, punctele de bifurcație șa-nod sunt conectate printr-un lanț de orbite heteroclinice, iar debutul comportamentului oscilant, când δ depășește valorile critice δ și $\overline{\delta}$, este cauzată de un fenomen de bifurcație globală care implică întregul lanț de orbite heteroclinice.

A doua parte a acestei teze prezintă un plan de dezvoltare a carierei și o schiță a viitoarelor tematici științifice ce vor fi abordate.
Bibliography

